Periodicity and Parity Theorems for a Statistic on r-Mino Arrangements

نویسندگان

  • Mark A. Shattuck
  • Carl G. Wagner
چکیده

If r > 2, the r-Fibonacci numbers F (r) n are defined by F (r) 0 = F (r) 1 = · · · = F (r) r−1 = 1, with F (r) n = F (r) n−1 + F (r) n−r if n > r. The r-Lucas numbers L (r) n are defined by L (r) 1 = L (r) 2 = · · · = L (r) r−1 = 1 and L (r) r = r + 1, with L (r) n = L (r) n−1 + L (r) n−r if n > r + 1. If r = 2, the F (r) n and L (r) n reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrized as in Wilf [12], by F0 = F1 = 1, etc., and L1 = 1, L2 = 3, etc.). Polynomial generalizations of Fn and/or Ln have arisen as generating functions for statistics on binary words [1], lattice paths [5], and linear and circular domino arrangements [8]. Generalizations of F (r) n and/or L (r) n have arisen similarly in connection with statistics on Morse code sequences [4] as well as on linear and circular r-mino arrangements [9]. Cigler [3] introduces and studies a new class of q-Fibonacci polynomials, generalizing the classical sequence, which arise in connection with a certain statistic on Morse code sequences in which the dashes have length 2. The same statistic, which we’ll denote by π, applied more generally to linear r-mino arrangements, leads to the polynomial generalization

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Statistic on Linear and Circular r-Mino Arrangements

We introduce a new statistic on linear and circular r-mino arrangements which leads to interesting polynomial generalizations of the r-Fibonacci and r-Lucas sequences. By studying special values of these polynomials, we derive periodicity and parity theorems for this statistic.

متن کامل

Parity Theorems for Statistics on Domino Arrangements

We study special values of Carlitz’s q-Fibonacci and q-Lucas polynomials Fn(q, t) and Ln(q, t). Brief algebraic and detailed combinatorial treatments are presented, the latter based on the fact that these polynomials are bivariate generating functions for a pair of statistics defined, respectively, on linear and circular domino arrangements.

متن کامل

Some Generalized Fibonacci Polynomials

We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and rLucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular r-mino arrangements.

متن کامل

Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs

Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...

متن کامل

On Fixed Point Theorems for Contractive-type Mappings in Fuzzy Metric Spaces

In this paper,  we provide two different kinds of fixed pointtheorems in  fuzzy metric spaces. The first kind is for the fuzzy$varepsilon$-contractive type mappings and  the second kind is forthe fuzzy order $psi$-contractive type mappings. They improve thecorresponding  conclusions in the literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006